Millions of people rely on inland fish farming for their food and livelihood. The majority of fish are raised in artificial ponds or floating cages in natural or man-made bodies of water. Freshwater fish farming is frequently combined with crop farming, with wastes and by-products from one being utilized as inputs for the other. New technologies are opening up new ways to save water and boost the productivity of aquaculture. Recirculating aquaculture systems (RAS) have been developed with the goal of drastically reducing the amount of water used in fish farms as well as their environmental impact. In situ bacterial processes are used by Biofloc technologies (BT) to maintain water quality and provide food for filter-feeding fish and crustaceans.
Title : The horizontal integration of a Shellfish farm in a broader business model
Perry Raso, Matunuck Oyster Farm, United States
Title : Role of artificial intelligence and remote sensing in remediation of aquatic pollution and development of Numerical Oceanic Climate Prediction Models (NOCPM)
Virendra Goswami, Indian Institute of Technology (IIT), India
Title : Aquaculture education challenges: Integrating sustainable practices into schools
J L Giovanna Hesley, CropKing, Inc. Curriculum Development, United States
Title : Can we farm eelgrass as a high protein sustainable marine grain for aquaculture?
Timothy C Visel, Retired Aquaculture Educator, United States
Title : Impact of antibiotic application on microbiome present in Catfish gut and water
Luxin Wang, University of California Davis, United States
Title : Smart sensors and real-time monitoring: Revolutionizing aquatic pollution management
Vidya Padmakumar, EcoDiversity Lab, Canada